On CFL Evolution Strategies for Implicit Upwind Methods in Linearized Euler Equations∗

نویسندگان

  • H. Martin Bücker
  • Bernhard Pollul
  • Arno Rasch
چکیده

In implicit upwind methods for the solution of linearized Euler equations, one of the key issues is to balance large time steps, leading to a fast convergence behavior, and small time steps, needed to sufficiently resolve relevant flow features. A time step is determined by choosing a CourantFriedrichs-Levy (CFL) number in every iteration. A novel CFL evolution strategy is introduced and compared with two existing strategies. Numerical experiments using the adaptive multiscale finite volume solver QUADFLOW demonstrate that all three CFL evolution strategies have their advantages and disadvantages. A fourth strategy aiming at reducing the residual as much as possible in every time step is also examined. A truncation error-free sensitivity analysis investigating the influence of the CFL number on the residual is carried out confirming that, today, CFL control is still a highly intricate problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

A Comparison between Domain Decomposition and Fully Implicit Approaches for a Parallel 3d Upwind Flow Solver

An implicit method for the solution of the 3D supersonic Euler equations is presented. The numerical technique adopted is a nite volume method based on an unfactored implicit upwind scheme. A great relevance is given to the deenition of the implicit operator and to the solution of the linear systems. A preconditioned iterative solver has been used showing better performance than unpreconditione...

متن کامل

Assessment of implicit operators for the upwind point Gauss-Seidel method on unstructured meshes

The effect of the numerical dissipation level of implicit operators on the stability and convergence characteristics of the upwind point Gauss-Seidel (GS) method for solving the Euler equations was studied through the von Neumann stability analysis and numerical experiments. The stability analysis for linear model equations showed that the point GS method is unstable even for very small CFL num...

متن کامل

Stability Results and Algorithmic Strategies for the Finite Element Approach to the Immersed Boundary Method

The immersed boundary method is both a mathematical formulation and a numerical method for the study of fluid structure interactions. Many numerical schemes have been introduced to reduce the difficulties related to the non-linear coupling between the structure and the fluid evolution; however numerical instabilities arise when explicit or semi-implicit methods are considered. In this work we p...

متن کامل

Analysis of preconditioning and multigrid for Euler flows with low-subsonic regions

For subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of multigrid-accelerated point Gauss-Seidel relaxation is analyzed. Error decay by convection across domain boundaries is also discussed. A fix to poor convergence rates at low Mach numbers is sought in replacing the point relaxation applied to unconditioned Euler equations, by locally implicit "ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006